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Consignes :

Le rendu doit &tre téléchargé sur moodle sous forme de PDF a la fin du projet.
Remplissez tous les champs prédéfinis dans les sections 2, 3, et 4.

Indiquez toujours les unités a la suite des valeurs numeriques.

Indiquez optionnellement les formules mathématiques utilisées.

Utilisez optionnellement les sections de discussion pour détailler vos calculs.

Soignez les schémas et graphiques.

Les schémas peuvent étre faits a la main.

11 est conseillé d’implémenter un code Matlab et de I’utiliser pour générer les graphiques.



1. Calculs préliminaires
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Que pouvez-vous dire de la rigidité des lames selon z ? Quelle hypothése peut-on faire ?

Discussion

Précisions
L’équation pour la rigidité des lames est dépendante de leurs conditions aux limites, que 1’on peut ici
considérer comme encastrées. Utilisez Euler-Bernoulli pour identifier la rigidité des lames lorsque

elles est soumis a une force laterale.
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Rappel: Théorie des poutres Euler Bernoulli

M, q(z) >0
VYVYVYYY

2 2
Pour une poutre d'Euler-Bernoulli, il est vrai que % <E1%u(x)) = q(x)

Ou u(x) est le déplacement de la poutre le long de I'axe z, et q est la charge répartie.

Pour calculer la rigidité des lames, puisque EI est constant le long de x et que I'on sait qu'une force F
agit a l'extrémité de la poutre, nous pouvons écrire I'équation d'Euler-Bernoulli sous la forme d'une
équation différentielle du troisieme ordre:

d3
El— =—F

Utilisez cette équation pour trouver la rigidité demandée.

NOTE : Le systéme de coordonnées indiqué ici est différent du systéme global se référant au rotor.
Le systéme global du rotor a les axes x et z corrects, le long desquels vous devez calculer la rigidité
latérale.

Le systéme de poutre local introduit dans cette section se référe uniquement aux équation différentielle
ci-dessous et n'est utile que pour expliquer la poutre d'Euler-Bernoulli.

Pour plus d’informations : https://en.wikipedia.org/wiki/Euler%E2%80%93Bernoulli_beam_theory .



https://en.wikipedia.org/wiki/Euler%E2%80%93Bernoulli_beam_theory

2. Accélération du groupe d’entrainement

Schéma du modele cinématique réduit

Courbe d’accélération du groupe
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Discussion

Précisions
Couple moteur :
Couple résistant du rotor :
Principe de réduction :
Couple résistant du rotor réduit :

Couple global réduit :

Equation de mouvement cinématique :

T (wy) = Ty, = cst

Ty (@) = ayw, + by

T (W) wm = Ty (wr) 0y
T} (wpy) = aywy, + by
T"(wy) =a*wy, +b*

];(bm = T*(wm)




3. Analyse dynamique du groupe d’entrainement

Schéma du modele dynamique réduit

Schéma du modele dynamique réduit et simplifié

Justification de la simplification
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Discussion

Précisions

Utilisez le modeéle simplifié uniquement pour calculer I'erreur sur la fréquence naturelle.
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4. Réponse forcée du rotor

Suggestions:

- Utilisez le systéme de coordonnées suivant

La direction z positive est orientée a I'opposé des aimants.

- Comme les deux supports sont identiques, ils ont la méme masse mg

Schéma du modéle dynamique

(x) (Déplacement du centre de masse durotor le long de x
0~ Rotation du rotor, positive le long de Y

)

Plage du balourd Li/
mg*mm
Masse minimale du support ms/g
Premiére vitesse critique du systeme oro1 /
(avec la masse des supports choisie) kRPM
Seconde vitesse critique du systeme o2 /
(avec la masse des supports choisie) kRPM
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Matrices de masse et de rigidité / Alternativement : équations libres (homogéne) de mouvements.

Courbes de déplacement et d’accélération des supports
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Discussion
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